Wednesday, October 7, 2015
1012 C Street  •  Floresville, TX 78114  •  Phone: 830-216-4519  •  Fax: 830-393-3219  • 

WCN Site Search

Lost & Found

Lost: Border Collie, black and light brown, 9 months old, wearing a green collar, last seen Sept. 22 near CR 427 in Poth. If found call 210-324-1208.
Found: 2 brindle cows, on Sept. 12, at the end of La Gura Rd. in South Bexar County, located between South Loop 1604 and the San Antonio River, Gillett Rd. on east and Schultz Rd. on the west. Call after 8 p.m., 210-310-9206.

VideoLost: Basset hound mix puppy, goes by the name "Darla," 15272 U.S. Hwy. 87 W, La Vernia. Call Kaitlynn at 210-758-2495.
More Lost & Found ads ›

Help Wanted

Warning: While most advertisers are reputable, some are not. Unfortunately the Wilson County News cannot guarantee the products or services of those who buy advertising space in our pages. We urge our readers to use great care, and when in doubt, contact the San Antonio Better Business Bureau, 210-828-9441, BEFORE spending money. If you feel you have been the victim of fraud, contact the Consumer Protection Office of the Attorney General in Austin, 512-463-2070.
Be skeptical of ads that say you can make lots of money working from the comfort of your home. If this were true, wouldn’t we all be working at home?
More Help Wanted ads ›

Featured Videos

Video Vault ›


The Economist: Striving for Science, Technology, Engineering, and Math

E-Mail this Story to a Friend
Print this Story

The author of this entry is responsible for this content, which is not edited by the Wilson County News or
Dr. M. Ray Perryman
November 27, 2013 | 2,101 views | Post a comment

The evolving economy is generating a need for STEM (Science, Technology, Engineering, and Math) students, graduates, and employees. The increased demand for individuals is driven both by the types of industries which are growing and changes in virtually every sector of the economy (such as greater incorporation of technology). Texas is particularly in need of persons with these types of training given the state’s strong energy and technology segments.

Despite the emphasis on STEM in recent years, the numbers of young people focusing in such areas are not growing as quickly as needed for optimal performance down the road. Females, in particular, tend to opt out of STEM; it would behoove us to figure out why, whether due to cultural biases, the way we tend to present STEM topics, or something else.

Interestingly, there are articles and studies out there that claim the STEM shortage is a myth or that STEM isn’t an issue worthy of special emphasis. I respectfully disagree. Many of the fastest-growing occupations require STEM, and the need for STEM knowledge is expanding in virtually every field. Moreover, many types of jobs we cannot even conceive of sitting here today will be filled by those trained in the sciences, technology, and math. (It wasn’t so long ago that you could count the number of actual and projected computers in the world on one hand; now, related industries support millions of jobs.)

Clearly, persons with both a STEM background and a broader world view (whether through personality, background, education, or some combination thereof) may be the best fits for certain types of jobs. Also, blending STEM training with other experiences can be beneficial. For example, any engineer working on product development can benefit from the ability to understand customer issues and motivators. On the other hand, a STEM-intensive background can open doors into a variety of fields ranging from sales to management and beyond.

Although the long-term pattern indicates growth at a rate faster than non-STEM fields, cycles are inevitable. For one thing, some of the industries which rely on STEM are inherently cyclical (such as energy, aviation, electronics, and others). While the US workforce has become increasingly mobile over time, there is naturally still some resistance. Also, a person with STEM training who has specialized in one industry is not necessarily ideal for another. Such mismatches are certainly not the same thing as a glut, however, and should not be used as evidence that we don’t need to focus on ensuring we get enough kids interested in sciences and technology.

Another interesting argument used to argue against the STEM shortage is the fact that many STEM graduates are working in other fields. The evidence that STEM grads find multiple pathways into other types of jobs is surely good news and reason young people should seriously consider such training.

One simple way to gauge the need for STEM graduates (or any other) is to look at salaries. The US Bureau of Labor Statistics maintains a database of wage information for some 800 occupations. If you sort this data by average annual earnings, you’ll find that the top salaries are very concentrated in STEM fields. Doctors of a number of specialties top the list; while there is obviously substantial additional education for such professions compared to the average, STEM is at the heart of it. Engineers are also strongly represented in the database, and some of the highest starting salaries at present are for engineering majors. While salaries may not be escalating all that rapidly in any field (as we come off the recent recession), the fact remains that STEM fields have long been well paying and are more than holding their own.

Fixing the problem will require a multifaceted approach. First of all, there are issues which must be resolved in K-12 schools. Early education aimed at engaging the interest of students in the sciences can increase the probability that they will pursue additional education in such fields. There are plenty of simple, cool science experiments and amazing things about numbers and how they work, and it is crucial that curricula (and standardized testing requirements and schedules) leave room for exploration, experimentation, and other activities to expose young students to the fascinating aspects of STEM fields.

Another issue is that far too many students receiving high school diplomas are unprepared for college-level work, particularly in STEM classes. Remedial math coursework is all too often needed, despite the fact that it is far more costly to teach in the college setting. Certainly, the recent move in Texas to define Algebra II as “advanced math” to be taken by a select few is a massive step in the wrong direction which can’t help but limit the opportunities for many students (including those who choose technical training over a college degree) and the economy as a whole. Also, higher education (both university and technical) institutions should work to align with the needs of the workplace to ensure that graduates have the training they need to flourish in STEM-related occupations.

Ultimately, market mechanisms will play a definite role in solving the shortfall problem. As students eye high starting salaries for those with STEM degrees, they become more likely to pursue such majors. While money isn’t everything on the job, it is a primary consideration for most of us. Even with the allure of nice salaries, however, it is critical that we turn out high school graduates who are open to these possibilities and academically prepared for the coursework and/or training required.

Dr. M. Ray Perryman is President and Chief Executive Officer of The Perryman Group ( He also serves as Institute Distinguished Professor of Economic Theory and Method at the International Institute for Advanced Studies.
‹ Previous Blog Entry

Your Opinions and Comments

Be the first to comment on this story!

You must be logged in to post a comment.

Not a subscriber?
Subscriber, but no password?
Forgot password?

Commentaries Archives

Commentaries page
Commentaries who represents me?
Triple R DC ExpertsAllstate & McBride RealtyVoncille Bielefeld homeDrama Kidsauto chooserHeavenly Touch home

  Copyright © 2007-2015 Wilson County News. All rights reserved. Web development by Drewa Designs.